Lights to Port - Lights to Starboard

An Objective Forensic Analysis of the Collision Between the Stockholm and the Andrea Doria

by

Samuel Halpern

November 2008

STOCKHOLM and ANDREA DORIA JULY 1956

Stockholm

Before

After

Andrea Doria

Before

After

Some Key Events Before the Collision

20:00:00	Andrea Doria heading 267° at 21.8 knots in relatively dense fog. Stockholm heading 090° at 18.5 knots with 5 to 6 miles visibility.
$21: 40: 00$	Capt. Calamai orders Andrea Doria's course changed from 267° to 261° to pass 1 to 2 miles south of the Nantucket Shoals lightship. Capt. Nordenson orders Stockholm's course changed from 090° to 087° to pass within 1 to 2 miles south of the Nantucket lightship.
$22: 10: 00$	Stockholm's 3/O Carstens-Johannsen orders a course change from 087° to 089° to compensate for current drift that was setting Stockholm more northward than course line laid out by Capt. Nordenson.
$22: 20: 00$	Andrea Doria's $2 / O$ Franchini reports Nantucket lightship 1 mile on starboard beam on radar. Capt. Calamai orders a course change from 261° to 268° to put Andrea Doria on a heading for the Ambrose Channel lightship.

Some Key Events Before the Collision

$22: 40: 00$	Carstens-Johannsen orders a course change from 089° to 091° for Stockholm to further compensate for a northerly current drift.
$22: 45: 30$	Stockholm is picked up on Andrea Doria's radar at a distance of about 17 nautical miles bearing slightly to the right of the heading flasher.
$22: 53: 00$	Andrea Doria is picked up on Stockholm's radar at a distance of about 12 nautical miles bearing slightly to the left of the heading flasher.
$22: 56: 00$	Carstens-Johannsen plots Andrea Doria at 10 miles bearing 2° to port. In reality, Andrea Doria was close to dead ahead.
$23: 02: 00$	Carstens-Johannsen plots Andrea Doria at 6 miles bearing 4° to port. In reality, Andrea Doria was only 2° to port.
$23: 05: 00$	Capt. Calamai orders a course change of "4 ${ }^{\circ}$ to the left, nothing to the right" for Andrea Doria. The two ships are 3.6 miles apart when Andrea Doria comes on to a heading of $264^{\circ} 30$ seconds later.

Approach From 17 Mile Separation Derived From Course Recorder Data and Ship Speeds

Time	Range (NMs)	Mean Heading of Stockholm	Mean Heading of Andrea Doria	Rel. Bearing of Andrea Doria from Stockholm	Rel. Bearing of Stockholm from Andrea Doria
$22: 45: 30$	17.1	090°	268°	1° port	1° stbd
$22: 56: 00$	10.0	090°	268°	dead ahead	1° stbd
$23: 02: 00$	6.0	092°	268°	2° port	2° stbd
$23: 05: 00$	4.0	088°	268°	2° stbd	2° stbd
$23: 05: 30$	3.6	090°	264°	1° stbd	6° stbd
$23: 11: 00$	0.0	130°	254°	n/a	n/a

Some Key Events Before the Collision

23:09:00	Carstens-Johannsen orders a 2-point starboard turn on Stockholm. Distance between ships now at 1.3 nautical miles.
23:10:00	Stockholm completes 24° turn. Lookout Johansson calls bridge to tell Carstens that he sees lights about 20 degrees to port. Lights of the Stockholm starting to appear to Capt. Calamai and 3/O Giannini out on Andrea Doria's starboard bridge wing and to the lookout out on the bow. Andrea Doria's 2/O Franchini leaves the radar when hearing reports of lights being seen. The ships are now just 0.6 miles apart.
$23: 10: 30$	Carstens hangs up the phone and goes out onto Stockholm's port bridge wing and sees Andrea Doria showing a green sidelight about to cross his bow from left to right. He orders full right rudder and goes to the engine telegraphs to signal full astern. Capt. Calamai sees Stockholm showing a red sidelight and her forward masthead light swinging out to the left of the higher aft masthead light. Calamai orders hard left rudder and calls for a whistle signal be given to indicate a turn to port.
$23: 11: 00$	Impact! The bow of Stockholm strikes into Andrea Doria just aft of the starboard bridge wing.

Course Recorder Outputs

> CR 278
> $\left(267^{\circ}\right.$ true $)$

Interpretation of Data From Course Recorders

Course recorder data for Stockholm (adjustment to gyro heading $=-2.5^{\circ}$)

Course recorder data for Andrea Doria (adjustment to gyro heading $=-11^{\circ}$)

time from course recorder	heading (deg)	
	recorder	gyrocomp value
20:00-21:40	mean heading 092.5	090
21:40-22:10	mean heading 089.5	087
22:10-22:40	mean heading 091.5	089
22:40:30-22:50:00	mean heading 093	090.5
22:50:30-23:07:30	mean heading 092.5	090
23:08:00-23:09:00	mean heading 095	092.5
23:09:00-23:10:00	start right turn 095 to 107.5	092.5 to 105
23:10:00-23:10:30	mean heading 119	116.5
23:10:30-23:11:00	hard right turn 119 to 132	116.5 to 129.5
23:11:00	impact at 132	129.5
23:11:00-23:11:30	30 sec time jump at 138	135.5
23:11:30-23:12:00	very sharp right 138 to 212	135.5 to 209.5
23:12-23:13:30	turning right 212 to 228	209.5 to 225.5
23:13:30	228 starts turning left	225.5

Helmsman changed on Stockholm at 20:00, $21: 20$, and 22:40

time from course recorder	heading (deg)	
	recorder	gyrocomp value
21:00-21:40	mean heading 278	267
21:40-22:21	mean heading 272	261
22:21:00-23:05:30	mean heading 279	268
23:05:30-23:06:00	start left turn 279 to 275	268-264
23:06:00-23:10:00	mean heading 275	264
23:10:00-23:11:00	drift left 275 to 273	264 to 262
23:11:00	start left turn from 273	262
23:11:30*	impact at 265	254
23:11:30-23:12:00	cont. left 265 to 220**	254 to 209
23:12-23:13:30	cont. left 220 to 160	209 to 149
23:13:30	160 starts turning right	149

* Course recorder time for AD appears to be ~30 sec ahead of that on Stockholm. adjustment taken in spreadsheet data.
** Change in heading rate noted at 220° on recorder graph.

Conflicting Accounts - Radar Plot for Andrea Doria Based on Information Provided by Second and Third Officers

Stockholm's Heading Derived From Andrea Doria's Reported Radar Readings And Known Speed Of Vessels

The Vector Triangle
E-R = course vector for "our" ship [Andrea Doria]
E-M = course vector for "them" [Stockholm]
R-M = relative motion vector
CPA = closest point of approach

Radar Plot Analysis

Time interval $=20.25$ minutes
Andrea Doria's reported heading $=268^{\circ}$
$\mathrm{ER}=7.36$ miles
$\mathrm{EM}=6.14$ miles
RM $=13.5$ miles
Direction of relative motion $=089^{\circ}$
EM heading $($ Stockholm $)=090.6^{\circ}$
CPA $=0.84$ miles
Bearing to CPA $=359^{\circ}$
Actual mean headings of Stockholm ranged from 089° to 092° over relevant time interval showing wide yaw variations on her course recorder.

Conflicting Accounts - Radar Plot for Stockholm Based on Information Provided by Third Officer

Andrea Doria's Heading Derived From Stockholm's Reported Radar Readings And Known Speed Of Vessels

The Vector Triangle

E-R = course vector for "our" ship [Stockholm]
E-M = course vector for "them" [Andrea Doria]
R-M = relative motion vector
CPA = closest point of approach

Radar Plot Analysis

Time interval $=6$ minutes
Stockholm's reported heading $=091^{\circ}$
ER $=1.82$ miles
$\mathrm{EM}=2.18$ miles
RM $=4.00$ miles
Direction of relative motion $=272^{\circ}$
EM heading $\left(\right.$ Andrea Doria) $=272.8^{\circ}$
CPA $=0.52$ miles
Bearing to CPA $=002^{\circ}$
Actual mean heading of Andrea Doria was 268° over relevant time interval with low yaw variations seen on her course recorder.

Spreadsheet Analysis

Working the Problem Backwards

Knowing the speeds and exact headings of each vessel we can reconstruct the movements of each vessel as a function of time. We can also determine the range between vessels and the relative bearings of each as seen from the other for any given time.

$$
\begin{aligned}
& X_{2}=X_{1}+\delta X \\
& Y_{2}=Y_{1}-\delta Y \\
& \theta_{1-2}=\left(\theta_{1}+\theta_{2}\right) / 2
\end{aligned}
$$

Spreadsheet Analysis

Working the Problem Backwards From 23:00:00

23:04:00	90.5	268.0	-2.10	0.23	2.53	0.26	4.64	0.03	4.64	0.3	-0.8	1.7
23:04:30	89.5	268.0	-1.95	0.23	2.35	0.25	4.30	0.02	4.30	0.3	0.2	1.7
23:05:00	88.0	268.0	-1.79	0.24	2.17	0.25	3.96	0.01	3.96	0.1	1.9	1.9
23:05:30	89.5	264.0	-1.64	0.24	1.99	0.23	3.63	-0.01	3.63	-0.1	0.6	6.1
23:06:00	90.5	264.0	-1.49	0.24	1.81	0.22	3.29	-0.03	3.29	-0.5	0.0	6.5
23:06:30	89.5	264.0	-1.33	0.24	1.63	0.20	2.96	-0.04	2.96	-0.9	1.4	6.9
23:07:00	88.0	264.0	-1.18	0.24	1.44	0.18	2.62	-0.07	2.62	-1.5	3.5	7.5
23:07:30	90.0	264.0	-1.02	0.25	1.26	0.16	2.29	-0.09	2.29	-2.2	2.2	8.2
23:08:00	92.5	264.0	-0.87	0.24	1.08	0.14	1.95	-0.10	1.96	-3.1	0.6	9.1
23:08:30	92.5	264.0	-0.72	0.24	0.90	0.12	1.62	-0.12	1.62	-4.1	1.6	10.1
23:09:00	92.5	264.0	-0.56	0.23	0.72	0.10	1.28	-0.13	1.29	-5.8	3.3	11.8
23:09:30	105.0	264.0	-0.41	0.21	0.54	0.08	0.95	-0.12	0.96	-7.5	-7.5	13.5
23:10:00	116.5	263.0	-0.27	0.15	0.36	0.06	0.63	-0.09	0.63	-8.3	-18.2	15.3
23:10:30	116.5	262.0	-0.13	0.08	0.18	0.04	0.31	-0.05	0.31	-8.5	-18.0	16.5
23:11:00	129.5	254.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#DIV/0!	\#DIV/0!	\#DIV/0!
time	course/S	course/AD	Xst	Yst	Xad	Yad	$\Delta \mathbf{X}$	ΔY	Range	Ψ	Rel.B/ST	Rel.B/AD

$\mathrm{X}-\mathrm{Y}$ coordinates in nautical miles (NMs)

St = Stockholm
AD = Andrea Doria

Speed of Stockholm = 0.308 NMs/min (18.5 knots)
Speed of Andrea Doria $=0.364 \mathrm{NMs} / \mathrm{min}$ (21.8 knots)
Rel. $B=$ relative bearing (+ starboard; - port)

Plot of Collision Sequence From 23:04:00 to 23:11:00 Derived_From Course_Recorder Data and Ship Speeds

Conflicting Accounts - Stockholm's Story

Andria Doria Allegedly Sighted At 1.8 to 1.9 NMs About 20° Off Port Bow

Actual Spreadsheet Data Values					
	Range (NMs)	Mean Heading Stockholm	Mean Heading Andrea Doria	Rel. Bearing of Andrea Doria from Stockholm	
Time	1.85	092.5°	264°	20° port	

Conflicting Accounts - Andrea Doria's Story

Stockholm Allegedly Sighted At 1 NM About 40° Off Starboard Bow

Actual Spreadsheet Data Values				
Time	Range $($ NMs)	Mean Heading Andrea Doria	Mean Heading Stockholm	Rel. Bearing of Stockholm from Andrea Doria
$22: 05: 00$	3.5	264°	088°	14° starboard
$23: 08: 00$	1.6	264°	092.5°	29° starboard
$23: 09: 00$	1.0	264°	092.5°	45° starboard

What Should the Radar Screens Have Shown Using a Heads-Up Display?

Sector of Interest on the Radar Screen

What Andrea Doria's radar screen should have shown
What Stockholm's radar

Collision

Seconds Before Impact

SWHepere

Angle of entry was about 56° following last minute unsuccessful evasive actions that were taken by both ships.

Andrea Doria Cannot Launch Port-Side Lifeboats

 Due To Severe And Immediate List To StarboardSWHApre

Andrea Doria assumes 25° list to
stard 15 minutes after collision

LIST VS. TIME

- 18° list to starboard in the first 3 minutes

- 25° list to starboard after 15 minutes
- List doubles to 50° in the next 10 hours.

Plot by Capt. Charles Weeks, Maine Maritime Academy

External Dynamics of the Collision

Ship A = Stockholm
Ship B = Andrea Doria
Direction of axis $\mathrm{X}=130^{\circ}$ true
Direction of axis $1=254^{\circ}$ true
$\mathrm{L}_{\mathrm{A}}=525 \mathrm{ft}$
$\mathrm{L}_{\mathrm{B}}=697 \mathrm{ft}$
$B=90 \mathrm{ft}$
$\mathrm{d}=\mathrm{L}_{\mathrm{B}} / 6=116 \mathrm{ft}$
$\alpha=124^{\circ}$
$\mathrm{M}_{\mathrm{B}} / \mathrm{M}_{\mathrm{A}}=\mathbf{2 . 4}$
$\mathrm{W}_{\mathrm{B}}=26400$ tons

$M_{B}=1.8 \times 10^{6}$ Slugs

Results of External Dynamic Analysis -1

Kinetic energy of ships before impact

Stockholm $=164,000 \mathrm{ft}$-tons
Andrea Doria $=549,000 \mathrm{ft}$-tons
Total combined energy of both ships $=713,000 \mathrm{ft}$-tons

Impact impulses

In longitudinal direction of Andrea Doria $\quad I_{\eta}=-9,650$ ton-seconds
In lateral direction of Andrea Doria
$I_{\xi}=+10,000$ ton-seconds

Energy released during crushing of ship structures

In longitudinal direction of Andrea Doria

$$
\begin{aligned}
& E_{\eta}=264,000 \text { ft-tons } \\
& E_{\xi}=129,000 \text { ft-tons }
\end{aligned}
$$

In lateral direction of Andrea Doria
Total combined energy loss during collision $=393,000 \mathrm{ft}$-tons or 55% of total combined kinetic energy before collision

Results of External Dynamic Analysis - 2

Velocities of ships before and immediately after impact
Stockholm $\left(\mathrm{V}_{\mathrm{A}}\right)=+31.2 \mathrm{ft} / \mathrm{sec}$ immediately before impact $=+18.5$ knots
Stockholm $\left(\mathrm{v}_{\mathrm{A}}\right)=-8.6 \mathrm{ft} /$ sec immediately after impact $=-5.1$ knots

Andrea Doria $\left(\mathrm{V}_{\mathrm{B}}\right)=+36.9 \mathrm{ft} / \mathrm{sec}$ immediately before impact $=+21.8$ knots
Andrea Doria $\left(\mathrm{v}_{\mathrm{B}}\right)=+26.4 \mathrm{ft} / \mathrm{sec}$ immediately after impact $=+15.6$ knots

Additional imparted rotations immediately after impact
Stockholm $\left(\omega_{\mathrm{A}}\right)=4.7^{\circ} / \mathrm{sec}$ to starboard
Andrea Doria $\left(\omega_{\mathrm{B}}\right)=1.4 \% \mathrm{sec}$ to port

Initial Movement at the Point of Impact Immediately After Impact

Detailed Movements Before and After Collision

(From 23:10:30.0 To 23:11:30.0)

Detailed Collision Sequence Animation

A FEW "WHAT IF?" SCENARIOS

In the sequence of slides that follow, ship positions are shown in 30 second increments from 23:04 to 23:11 derived from course recorder data. Stockholm is coming from the left; Andrea Doria is coming from the right.

WHY DID IT HAPPEN?

1. The choice of using an eastbound route putting Stockholm directly into the path of westbound shipping heading to New York just to save a little time and distance.
2. The failure of the Stockholm's Third Officer to call his captain or suspect fog when he could not see the lights of the fast approaching ship as it came under 6 miles almost dead ahead on his radar.
3. Dependence on an inattentive helmsman to keep a steady course and provide accurate heading reports while the third officer was trying to plot the radar picture on Stockholm. This may also have distracted the Third Officer from concentrating on the approaching vessel once it appeared on the radar.
4. The failure of those on the bridge of Andrea Doria to plot the radar picture as the situation developed, and the lack of special training by those manning the radar.
5. A possible breakdown in bridge team management on the Andrea Doria as the Second Officer left the radar upon hearing that lights were becoming visible. Also loss of situation awareness by the OOW of Stockholm caused by a phone call distraction during critical moments.

CONCLUSIONS

WHY DID IT HAPPEN?

6. Failure of Andrea Doria's Capt. Calamai to clearly signal his intentions to pass starboard-to-starboard by initiating a significant course change to port early enough for it to be seen on Stockholm's radar. Turning a mere 4° to port at a distance of just under 4 miles would not be noticed. Capt. Calamai also failed to imagine that the unseen approaching vessel would try to pass port-to-port as required by the rules of the road for two ships approaching each other nearly head on under visual conditions.
7. Failure of the Stockholm's Third Officer to signal his intentions for a port-toport passing by initiating his 2-point turn to starboard early enough for it to be seen on the Andrea Doria's radar.

Those responsible on the bridge of each ship placed a great deal of dependence on what was seen on their respective radars, and how they interpreted the data. They both failed to appreciate the limitations of using radar by not allowing enough time or distance for sudden actions to be taken by the approaching target vessel. When decisive actions were finally taken, it was too little and too late.

